Comparing implementations of penalized weighted least-squares sinogram restoration.

نویسندگان

  • Peter Forthmann
  • Thomas Koehler
  • Michel Defrise
  • Patrick La Riviere
چکیده

PURPOSE A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. METHODS The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. RESULTS All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors' previous penalized-likelihood implementation. CONCLUSIONS Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Dose Dual-Energy Computed Tomography for PET Attenuation Correction with Statistical Sinogram Restoration

Dual-energy (DE) X-ray computed tomography (CT) has been proposed as an useful tool in various applications. One promising application is DECT with low radiation doses used for attenuation correction in positron emission tomography (PET). In low-dose DECT, conventional methods for sinogram decomposition have been based on logarithmic transformations and ignored noise properties, leading to very...

متن کامل

Penalized Weighted Least-Squares Approach for Low-Dose X- Ray Computed Tomography

The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Ka...

متن کامل

Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT.

The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and in...

متن کامل

Dose reduction for kilovotage cone-beam computed tomography in radiation therapy.

Kilovotage cone-beam computed tomography (kV-CBCT) has shown potentials to improve the accuracy of a patient setup in radiotherapy. However, daily and repeated use of CBCT will deliver high extra radiation doses to patients. One way to reduce the patient dose is to lower mAs when acquiring projection data. This, however, degrades the quality of low mAs CBCT images dramatically due to excessive ...

متن کامل

Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography

Many estimators in signal processing problems are defined implicitly as the maximum of some objective function. Examples of implicitly defined estimators include maximum likelihood, penalized likelihood, maximum a posteriori, and nonlinear least squares estimation. For such estimators, exact analytical expressions for the mean and variance are usually unavailable. Therefore, investigators usual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 37 11  شماره 

صفحات  -

تاریخ انتشار 2010